Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase

نویسندگان

  • R. Lynn Sherrer
  • Joanne M. L. Ho
  • Dieter Söll
چکیده

Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNA(Sec) by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNA(Sec) by O-phosphoseryl-tRNA(Sec) kinase (PSTK), and conversion of O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNA(Sec). Although SerRS recognizes both tRNA(Sec) and tRNA(Ser) species, PSTK must discriminate Ser-tRNA(Sec) from Ser-tRNA(Ser). Based on a comparison of the sequences and secondary structures of archaeal tRNA(Sec) and tRNA(Ser), we introduced mutations into Methanococcus maripaludis tRNA(Sec) to investigate how Methanocaldococcus jannaschii PSTK distinguishes tRNA(Sec) from tRNA(Ser). Unlike eukaryotic PSTK, the archaeal enzyme was found to recognize the acceptor stem rather than the length and secondary structure of the D-stem. While the D-arm and T-loop provide minor identity elements, the acceptor stem base pairs G2-C71 and C3-G70 in tRNA(Sec) were crucial for discrimination from tRNA(Ser). Furthermore, the A5-U68 base pair in tRNA(Ser) has some antideterminant properties for PSTK. Transplantation of these identity elements into the tRNA(Ser)(UGA) scaffold resulted in phosphorylation of the chimeric Ser-tRNA. The chimera was able to stimulate the ATPase activity of PSTK albeit at a lower level than tRNA(Sec), whereas tRNA(Ser) did not. Additionally, the seryl moiety of Ser-tRNA(Sec) is not required for enzyme recognition, as PSTK efficiently phosphorylated Thr-tRNA(Sec).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-terminal domain of archaeal O-phosphoseryl-tRNA kinase displays large-scale motion to bind the 7-bp D-stem of archaeal tRNASec

O-Phosphoseryl-tRNA kinase (PSTK) is the key enzyme in recruiting selenocysteine (Sec) to the genetic code of archaea and eukaryotes. The enzyme phosphorylates Ser-tRNA(Sec) to produce O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) that is then converted to Sec-tRNA(Sec) by Sep-tRNA:Sec-tRNA synthase. Earlier we reported the structure of the Methanocaldococcus jannaschii PSTK (MjPSTK) complexed with ...

متن کامل

RNA-dependent conversion of phosphoserine forms selenocysteine in eukaryotes and archaea.

The trace element selenium is found in proteins as selenocysteine (Sec), the 21st amino acid to participate in ribosome-mediated translation. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNA(Sec). Its biosynthesis from seryl-tRNA(Sec) has been established for bacteria, but the mechanism of conversion from Ser-tRNA(Sec) remained unresolved for archaea and eukarya. Here, we p...

متن کامل

Identification and characterization of phosphoseryl-tRNA[Ser]Sec kinase.

In 1970, a kinase activity that phosphorylated a minor species of seryl-tRNA to form phosphoseryl-tRNA was found in rooster liver [Maenpaa, P. H. & Bernfield, M. R. (1970) Proc. Natl. Acad. Sci. USA 67, 688-695], and a minor seryl-tRNA that decoded the nonsense UGA was detected in bovine liver. The phosphoseryl-tRNA and the minor UGA-decoding seryl-tRNA were subsequently identified as selenocys...

متن کامل

Biosynthesis of Selenocysteine on Its tRNA in Eukaryotes

Selenocysteine (Sec) is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS) is the previously identified pyridoxal phosphate-containing protein known as the ...

متن کامل

Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation

Selenocysteine (Sec)-decoding archaea and eukaryotes employ a unique route of Sec-tRNA(Sec) synthesis in which O-phosphoseryl-tRNA(Sec) kinase (PSTK) phosphorylates Ser-tRNA(Sec) to produce the O-phosphoseryl-tRNA(Sec) (Sep-tRNA(Sec)) substrate that Sep-tRNA:Sec-tRNA synthase (SepSecS) converts to Sec-tRNA(Sec). This study presents a biochemical characterization of Methanocaldococcus jannaschii...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008